

Introducing BizTalk Server 200 9

 David Chappell, Chappell & Associates

March 2009

© Copyright Microsoft Corporation 2009. All rights reserved.

2

Contents

AN OVERVIEW OF BIZTALK SERVER 2009 ... 3

THE CHALLENGE: IMPROVING BUSINESS PROCESSES .. 3
ADDRESSING THE CHALLENGE: WHAT BIZTALK SERVER 2009 PROVIDES ... 4

Application Integration in a Service-Oriented World .. 4
Business-to-Business Integration ... 6
Business Process Management ... 7

BIZTALK SERVER 2009 FUNDAMENTALS .. 8

CONNECTING SYSTEMS .. 9
Sending and Receiving Messages: Adapters .. 9
Processing Messages: Pipelines .. 10
Translating Messages: Data Mapping .. 11

DEFINING BUSINESS PROCESSES .. 12
Using Orchestrations ... 12
Using the Business Rule Engine .. 14

CREATING SCALABLE CONFIGURATIONS .. 16
CREATING AND MANAGING BIZTALK APPLICATIONS .. 17

Creating Applications .. 17
Managing Applications .. 17

ADDITIONAL BIZTALK SERVER 2009 TECHNOLOGIES ... 19

BUSINESS ACTIVITY MONITORING .. 19
USING EDI ... 21
WORKING WITH RFID ... 22
INFRASTRUCTURE FOR SERVICE-ORIENTED ARCHITECTURES ... 24
ENTERPRISE SINGLE SIGN-ON .. 25

CONCLUSION .. 26

ABOUT THE AUTHOR .. 27

3

An Overview of BizTalk Server 2009

No application is an island. In fact, tying systems together has become the norm in most organizations

today. Yet connecting software means more than just exchanging bytes. As organizations continue to

move toward a service-oriented world, the real goalðcreating effective business processes that unite

disparate systems into a coherent wholeðcomes within reach.

BizTalk Server 2009 supports this goal. Like its predecessors, this sixth release in the BizTalk Server

line allows connecting diverse applications, then creating, executing, and monitoring process logic that

uses those applications. The objective is to help organizations create better automated business

processes.

The Challenge: Improving Business Processes

The great majority of modern business processes depend on software. In most organizations, this

software has been created at different times using different technologies on different platforms.

Accordingly, automating business processes requires connecting diverse systemsðthereôs no way

around it.

Doing this requires solving many different problems, none of them simple. An effective approach is to

use a central integration platform thatôs capable of drawing together all of the systems used in a

business process. This technology must be able to do several things, including:

 Connect to diverse software using a range of different approaches. Web services can be the best

choice for some connections, simple file sharing might be better for others, while still others might

use message queuing or something else. Connecting with line-of-business (LOB) applications also

presents its own uniqueðand importantðproblems that must be solved.

 Support the execution of automated processes. Something must host the logic that drives an

integrated business process, and an integration platform is an obvious choice for this role. While

execution of the complete process is actually spread across the various systems involved, an

integration platform can implement the centralized logic that controls this process.

 Make connecting with applications in other organizations as easy as possible. This requires

supporting industry standards for cross-organization interactions, such as Electronic Data

Interchange (EDI), providing services that help connect to trading partners, and more.

 Allow real-time monitoring of business processes. Along with providing a home for hosting the logic

that coordinates a process, an integration platform can also provide a central place for monitoring

the state of that process. This kind of business activity monitoring allows information workersðthe

people who are ultimately most concerned with this processðto keep track of exactly whatôs going

on.

 Handle events from the physical world, such as those generated by radio-frequency identification

(RFID) tags. Connecting these events to existing applications is also important in quite a few

situations.

The goal of BizTalk Server 2009 is to help organizations improve their business processes by solving

these and other problems. The next section takes a big-picture look at how it does this.

4

Addressing the Challenge: What BizTalk Se rver 2009 Provides

Itôs useful to divide the problem of creating better automated business processes into three broad

areas:

 Connecting applications within a single organization, commonly referred to as enterprise

application integration (EAI). As more organizations move toward service-oriented architecture

(SOA), the approach to doing this also becomes increasingly service-oriented.

 Connecting applications in different organizations, typically referred to as business-to-business

(B2B) integration.

 Supporting the holistic approach to working with automated business processes thatôs defined by

business process management (BPM).

Understanding BizTalk Server 2009 requires a grasp of how it addresses each of these three areas.

Application Integration in a Service -Oriented World

Whether itôs viewed through the lens of SOA or from the more traditional perspective of EAI, supporting

automated business processes requires integrating applications. Figure 1 shows the core BizTalk

Server 2009 technologies for doing this: messaging and orchestration.

Figure 1: BizTalk Server 2009 provides messaging, orchestration, design tools, and more.

The messaging function contains several parts, one of which is a set of adapters. An adapter might

implement a particular communication technology, such as Web services, or it might know how to

interact with a specific LOB application, such as SAP ERP. Whatever adapters are used, each

message is passed through a pipeline that can change it in various ways. To allow translating among

the various formats used by different applications, the messaging function provides data mapping.

Using various graphical tools, a developer can create pipelines, define maps, and control other aspects

of messaging.

While some problems can be solved solely with the messaging function of BizTalk Server 2009, others

require creating logic that drives a business process. Orchestrations implement this logic. As Figure 1

shows, developers use a graphical tool called the BizTalk Orchestration Designer to create and modify

these process definitions.

5

Developers are key players in the world of BizTalk Server. Yet itôs important to understand that

business analysts and administrators also have essential roles. A business analyst, for example, might

initially define the rules and behaviors that make up a business process. She also determines the flow

of the business process, defining what information gets sent to each application and how one business

document is mapped into another. Once the business analyst has defined this process, a developer

can create a BizTalk application that implements it. This includes things such as choosing adapters,

defining the data mappings for the business documents that will be used, and creating the

orchestrations necessary to implement the process logic. An administrator can then deploy the BizTalk

application, set up communication among the systems, and perform other tasks. All three rolesð

business analyst, developer, and administratorðare necessary to create and maintain BizTalk Server

2009 solutions.

Figure 2 shows a simple example of how BizTalk Server 2009 can be applied to an integration

problem. In this scenario, an inventory application, perhaps running on an IBM mainframe, notices that

the stock of an item is low and so issues a request to order more. This request is sent to a BizTalk

Server 2009 orchestration (step 1), which then sends a message to this organizationôs ERP application

requesting a purchase order (step 2). The ERP application, which might be running on a Unix system

or something else, sends back the requested PO (step 3), and the orchestration then informs a

fulfillment application, perhaps built on Windows using the .NET Framework, that the item should be

ordered (step 4).

Figure 2: BizTalk Server 2009 can be used to automate a business process that spans multiple

applications on different platforms.

In this example, each application might communicate using a different protocol. Accordingly, BizTalk

Server 2009 must be able to talk with each one in its native communication style, using the appropriate

adapter. Also, notice that no single application is aware of the complete business process. The

intelligence required to coordinate all of the software involved is implemented in the BizTalk Server

2009 orchestration.

How does this change in a service-oriented world? One possibility is that the way applications interact

becomes more consistent by using standard Web services. Another change is that the role of a central

integration server might be viewed somewhat differently. A popular term for an integration technology in

a service-oriented world is enterprise service bus (ESB), and BizTalk Server 2009 can be used in this

style. To help do this, Microsoft provides guidance and reference architectures for ESB functionality.

Whether or not an organization takes a service-oriented view, managing integration technology is

essential. To allow this, BizTalk Server 2009 includes the BizTalk Administration console to let

6

developers and administrators monitor and manage the product. And to help navigate the thicket of

logon technologies that diverse applications might use, BizTalk Server 2009 includes an Enterprise

Single Sign-on facility. This technology provides a way to map authentication information between

Windows and non-Windows systems.

BizTalk Server also supports applications that work with RFID. RFID tags can be attached to pallets in

a warehouse, products on a shelf, and many other things, then used by applications to track the tagged

items. To help create these applications, BizTalk Server 2009 includes an RFID server.

All of these technologies are useful for connecting applications within a single organization. Most of

them can also be applied to connecting applicationsðand thus automating business processesð

across different organizations. The next section looks at how BizTalk Server 2009 supports this goal.

Business -to -Business Integration

Connecting applications within an organization is important, but connecting applications that span

organizations often brings at least as much value. Figure 3 shows a simple example of this kind of B2B

integration. The customer at the top of the figure runs a BizTalk Server 2009 orchestration that controls

a business process. This process allows the customer to purchase items from two supplier

organizations. Supplier A also uses BizTalk Server 2009, providing indirect access to its ERP

application. Both systems use an appropriate BizTalk adapter to communicate via, say, Web services.

Supplier B uses an integration platform from another vendor, connecting to the purchasing

organizationôs BizTalk orchestration using Web services or another mechanism.

Figure 3: BizTalk Server 2009 can be used to connect applications in different organizations.

Electronic Data Interchange (EDI) is a fundamental part of B2B communication today. Originally,

BizTalk Server supported EDI largely through third-party products. Beginning with the release that

preceded BizTalk Server 2009, Microsoft included broad EDI support in the product itself, along with a

7

tool to help manage relationships with EDI partners. BizTalk Server 2009 also provides accelerators to

help implement other popular standards, such as RosettaNet, SWIFT, and HL7. Each accelerator

includes pre-defined message definitions for the standard, along with relevant guidance and examples.

Business Process Management

Integrating applications into a single automated business process is a fundamental goal of BizTalk

Server 2009. Itôs become common today to view this problem as part of the larger area of business

process management. Yet the technology of BPM includes more than integration. As Figure 4 shows,

BizTalk Server 2009 also supports two more important BPM technologies: a business rule engine

(BRE) and business activity monitoring (BAM).

Figure 4: BizTalk Server 2009 includes a BRE and support for BAM.

Like all rules engines, the BRE in BizTalk Server 2009 allows evaluating sets of rules. While itôs

certainly possible to define business logic using the BizTalk Orchestration Designer, some applications

require evaluating a complex and often-changed set of rules. Insurance underwriting and loan

origination are common examples of this, and there are plenty of others. The goal of the BizTalk BRE is

to better support this kind of business process.

However a process is implemented, the people who use it need to know where things stand. How

many orders were processed in the last five minutes? How many customers were denied service in the

last hour? Providing this kind of real-time data to information workersðnot just IT peopleðcan bring

substantial business value. The BAM services in BizTalk Server 2009 exist to allow this. As Figure 4

shows, the information BAM provides can be accessed through standard tools, such as Microsoft

Excel, Office PerformancePoint Server, and others. BizTalk Server also provides support for extracting

BAM data from applications built using Windows Communication Foundation (WCF) and Windows

Workflow Foundation (WF).

8

Like its predecessors, BizTalk Server 2009 is focused on connecting applications, i.e., on system

workflow. A fundamental tenet of BPM, however, is that most business processes include both system

and human workflow. To address this, BizTalk Server 2009 can connect to human workflows running

on the latest release of Windows SharePoint Services. Accomplished via a SharePoint adapter, this

connection lets organizations create automated business processes that include both system workflow

and human workflow. In the complex and diverse world of enterprise software today, combining these

two approaches is a requirement for many organizations.

BizTalk Server 2009 Fundamentals

Having a broad grasp of the problems it addresses is the first step in understanding BizTalk Server

2009. Going deeper means looking further into the mechanics of how this technology actually works.

The place to start is with the basics of message flow, illustrated in Figure 5.

Figure 5: A message is received by a receive port, optionally processed by an orchestration, then

sent by a send port.

As the figure shows, a message is received by a receive port. Each receive port can have three

components:

 An adapter that knows how to communicate in a specific way;

 A receive pipeline that does things such as converting the message from its native format into an

XML document, validating the messageôs digital signature, and more;

 A data mapping, which transforms the message in some useful way.

The message is then delivered into a SQL Server database called the MessageBox. From here, it can

be read by an orchestration. Orchestrations arenôt created by writing code in a language such as C#,

9

however. Instead, a business analyst or (more likely) a developer uses a graphical tool to create a

group of shapes that express conditions, loops, and other behavior. And although itôs not shown in

Figure 5, orchestrations can optionally use the BRE to evaluate complex sets of rules.

Once an orchestration has processed a message, it typically produces another message destined for

some other application. This message is placed in the MessageBox, then picked up by a send port. A

send port can have the same three components as a receive port, and they perform the same

functions: mapping the message into its outgoing format, preparing that message for transmission in a

send pipeline, then actually transmitting it to its destination using an appropriate send adapter.

All of this is held together by subscriptions stored in the MessageBox. When a message is processed

by a receive port, a message context is created that contains various properties of the message. An

orchestration or a send port can subscribe to messages based on the values of these properties. For

example, an orchestration might create a subscription that matches all messages of the type ñInvoiceò,

or all messages of the type ñInvoiceò received from the QwickBank corporation, or all messages of the

type ñInvoiceò received from the QwickBank corporation whose amount field is greater than $10,000.

However itôs specified, a subscription returns to its subscriber only those messages that match the

criteria that subscription defines. A received message might initiate a new orchestration or it might

activate another step in an already running orchestration. When an orchestration sends a message,

that message is matched to a send port based on a subscription that port has established.

As this description suggests, a complete solution built on BizTalk Server 2009 contains various parts

(sometimes referred to as artifacts): orchestrations, pipelines, message schemas, and more. To allow

working with these as a single unit, a developer can group them into a BizTalk application. Each

BizTalk application wraps all of the pieces required for a solution into a single logical unit, making it the

fundamental abstraction for management and deployment.

BizTalk Server 2009 runs on Windows Server 2008 or Windows Server 2003. Using Windows Server

2008 lets BizTalk Server take advantage of various improvements in this newer release of the

operating system. For example, Hyper-V in Windows Server 2008 allows BizTalk Server 2009 to run in

a virtual machine containing four CPUs, while Windows Server 2003 limits this to two CPUs. Similarly,

BizTalk Server 2009 can use either SQL Server 2008 or SQL Server 2005. Once again, the newer

version of Microsoftôs flagship database product offers more for BizTalk Server 2009, such as improved

performance and better support for running in a virtualized environment.

Connecting Systems

BizTalk applications rely on send and receive ports to communicate with other applications. This

section takes a closer look at the three components that a port can contain: adapters, pipelines, and

data mappings.

Sending and Receiving Messages: Adapters

Interoperating with all kinds of applications on all kinds of systems is a fundamental requirement for

integration. BizTalk Server 2009 accomplishes this via adapters. Based on what a BizTalk application

must communicate with, its creator determines which adapters that application should use. He might

choose one of the built-in adapters BizTalk Server 2009 provides, use an adapter provided by a third

party, or even create a custom adapter.

The most recent adapters are built as WCF channels. The WCF-based adapters shipped with BizTalk

Server 2009 provide support for SOAP, SOAP with WS-* technologies such as WS-Security, and

more. Developers can create their own WCF-based adapters using either existing WCF channels or

custom channels created for a specific purpose. Microsoft also provides a BizTalk Adapter Pack that

includes WCF-based adapters for SAP, Siebel, Oracle eBusiness Suite, SQL Server, and the Oracle

10

database. All of these are created using the WCF Line-of-Business (LOB) Adapter SDK, a generalized

framework for creating adapters to LOB applications. In fact, adapters created using the WCF LOB

Adapter SDK can be used by any .NET Framework applicationðBizTalk Server isnôt required.

BizTalk Server 2009 also includes a number of non-WCF-based adapters. For example, the MSMQ

Adapter allows sending and receiving messages using Microsoft Message Queuing (MSMQ), while an

available WebSphere MQ Adapter allows sending and receiving messages using IBMôs WebSphere

MQ. Similarly, the SMTP Adapter and the POP3 Adapter allow sending and receiving email using

these standard protocols.

Other adapters allow interaction via common storage mechanisms. The File Adapter, for instance,

allows reading from and writing to files in the Windows file system. Because the applications involved in

a business process can often access the same file system, either locally or across a network,

exchanging messages through files can be a convenient option. The Windows SharePoint Services

Adapter allows accessing and publishing documents stored in SharePoint document libraries, and the

product also includes an adapter for exchanging information using IBMôs DB/2 database.

Another important category of non-WCF-based adapters are those that allow connecting to commonly

used business applications. BizTalk Server 2009 provides this style of adapter for SAP ERP, Siebel

eBusiness Application, PeopleSoft, JD Edwards OneWorld, and others. The product also provides the

BizTalk Adapters for Host Systems, which allow connecting to applications running on IBM zSeries

mainframes and iSeries mid-range systems.

Whatever receive adapter is used for incoming data, the messages it gets must commonly be

processed before they can be accessed by an orchestration. Similarly, outgoing messages produced

by an orchestration often need to be processed before they are transmitted by a send adapter. Both

kinds of processing depend on pipelines, as described next.

Processing Messages: Pipelines

The applications that support a business process communicate by exchanging various kinds of

documents, such as purchase orders, invoices, and many others. For a BizTalk application to

implement this process, it must be able to deal correctly with the messages that contain these

documents. The processing required to do this can involve multiple steps, and so itôs performed by a

message pipeline. Incoming messages are processed through a receive pipeline, while outgoing

messages go through a send pipeline.

For example, even though more and more applications understand XML documents, many cannot.

Since BizTalk Server 2009 typically works with XML documents internally, it must provide a way to

convert other formats to and from XML. Other services may also be required, such as authenticating

the sender of a message. To handle these and other tasks in a modular way, a pipeline is constructed

from some number of stages, each of which contains one or more components. Each component

handles a particular part of message processing, and BizTalk Server 2009 provides standard

components for the most common cases. If these arenôt sufficient, developers can also create custom

components for both receive and send pipelines.

BizTalk Server 2009 defines a few default pipelines, including a simple receive/send pair that can be

used for handling messages that are already expressed in XML. A developer can also create custom

pipelines using the Pipeline Designer. This tool, which runs inside Visual Studio, provides a graphical

interface that allows dragging and dropping components to create pipelines with whatever behavior is

required.

11

Translating Messages: Data Mapping

Pipelines are responsible for converting external documents into and out of an XML representation, if

required. Yet itôs up to the developer to define what that XML representation looks like, that is, to specify

the schema that should be used. Schemas are defined using the XML Schema Definition language

(XSD), a powerful but complex way to describe an XML documentôs structure and the types it can

contain. To make defining XSD schemas easier, BizTalk Server 2009 provides a tool called the BizTalk

Editor. Rather than creating a schema directly in XSD, this editor lets a developer build a schema by

defining its elements in a graphical hierarchy. Existing schemas can also be imported from files or Web

services.

Once messages are in a known XML schema, itôs possible to map between them. For example, itôs

common for some of the information in a received document to be transferred to a sent document,

perhaps transformed in some way. To allow this, BizTalk Server 2009 lets developers create maps.

Each map is expressed as a correlation between two XML schemas that defines a relationship

between elements in those schemas. The W3C has defined the Extensible Stylesheet Language

Transformation (XSLT) as a standard way to express these kinds of transformations between XML

schemas, and so maps in BizTalk Server 2009 are implemented as XSLT transformations.

Maps can be used in various ways. Suppose, for instance, that an incoming purchase order needs to

have some of its information mapped to an outgoing invoice. A developer might create a map that does

this, then invoke that map from a send pipelineðno orchestration is required. In a more complex case

that requires more business logic, a map might be invoked from within an orchestration. For example,

an order fulfillment process might receive an order for some number of items, then send back a

message indicating that the order was declined for some reason. Itôs possible that information from the

order, such as a request identifier and the quantity ordered, should be copied from fields in the received

order message into fields in the rejection message.

Maps are just XSLT, so an ambitious developer is free to build them by hand. To make this task easier,

BizTalk Server 2009 provides a graphical tool called the BizTalk Mapper. Figure 8 shows how a map

for transferring information from a contacts database into a CRM application might look.

12

Figure 6: The BizTalk Mapper allows specifying how information in one message should be mapped

to another message.

The transformation defined in a map can be simple, such as copying values unchanged from one

document to another. Direct data copies like this are expressed using a link, which is shown in the

BizTalk Mapper as a line connecting the appropriate elements in the source schema with their

counterparts in the destination schema. Most lines in Figure 8 show this kind of connection. More

complex transformations are also possible using functoids. A functoid is a chunk of executable code

that can define arbitrarily complex mappings between XML schemas. As the topmost line in Figure 8

shows, the BizTalk Mapper represents a functoid as a box on the line connecting the elements being

transformed. Since some of those transformations are quite common, BizTalk Server 2009 includes a

number of standard functoids for performing conversions, mathematical operations, and other tasks.

Having a way to define a documentôs XML schema is essential, as is a mechanism for mapping

information across documents with different schemas. The BizTalk Editor and BizTalk Mapper address

these two problems. Yet for many applications, defining schemas and maps isnôt enough; business

logic must also be specified. How this is done for BizTalk applications is described next.

Defining Business Processes

Sending messages between different systems is a necessary part of solving the problems that BizTalk

Server 2009 addresses. Yet while plenty of useful applications can be built using only the productôs

messaging capabilities, many others also require a way to define and execute process logic. This

section describes the technologies BizTalk Server 2009 provides to do this.

Using Orchestrations

In general, itôs always possible to implement an automated process directly in a language such as C#

or Visual Basic. Yet writing, maintaining, and managing long-running business processes created using

conventional programming languages can be challenging. Like its predecessors, BizTalk Server 2009

doesnôt take this approach. Instead, it allows creating a processôs logic graphically. Doing this can be

more effective than building the process in a conventional programming language, and it can also

make the process easier to understand and change.

Successfully creating an automated business process usually requires collaboration between software

developers and business people. To help with this, BizTalk Server 2009 provides a tool for each. The

developer tool runs inside Visual Studio, an environment in which software professionals feel at home.

Most business people donôt find Visual Studio especially inviting, however, so BizTalk Server 2009 also

provides a subset of the developer tool functionality via an add-in for Visio. An orchestration created in

the Visual Studio-based tool can be imported into the Visio-based tool and vice-versa, which helps

these two kinds of people work together to automate a business process.

Stripped to its essentials, every business process is a set of actions that together meet some useful

business need. The Orchestration Designer in BizTalk Server 2009 lets a developer define these

actions by connecting together a series of shapes in a logical way. Some examples of the shapes

available to an orchestrationôs creator are the following:

 The Receive shape, which allows the orchestration to receive messages.

 The Send shape, which allows the orchestration to send messages.

 The Port shape, which defines how messages are transmitted. Each instance of a port shape

is connected to either a Send or Receive shape. Each port also has a type, which defines things

13

such as what kinds of messages this port can receive, and a binding, which determines how a

message is sent or received by, for example, specifying a particular URL.

 The Decide shape, which represents an if-then-else statement that allows an orchestration to

perform different tasks based on Boolean conditions. An Expression Editor, part of the

Orchestration Designer, can be used to specify this conditional statement.

 The Loop shape, which allows performing an action repeatedly while some condition is true.

 The Transform shape, which allows transferring information from one document to another,

transforming it on the way by invoking maps defined with the BizTalk Mapper.

 The Parallel Actions shape, which allows specifying that multiple operations should be

performed in parallel rather than in sequence. The shape that follows this one wonôt be executed

until all of the parallel actions have completed.

 The Scope shape, which allows grouping operations into transactions and defining exception

handlers for error handling. Both traditional atomic transactions and long-running transactions are

supported. Unlike atomic transactions, long-running transactions rely on compensating logic rather

than rollback to handle unexpected events.

 The Message Assignment shape, which allows assigning values to orchestration variables.

These variables can be used to store state information used by the orchestration, such as a

message being created or a character string.

Figure 9 shows an orchestration created in the Orchestration Designer using a few of these shapes. In

this simple example, a message is received, a decision is made based on the content of that message,

and one of two paths is executed as a result of that decision. Orchestrations that solve real problems

can be significantly more complex than this, of course, and so to help in working with these more

complex diagrams, the Orchestration Designer provides the ability to zoom in and out. This lets a

developer view only those parts of an orchestration that sheôs currently interested in. Once a developer

has defined an orchestration, the group of shapes and relationships between them is converted into a

standard .NET assembly. And itôs still possible to add explicit code to an orchestration when necessary

by calling a .NET object from inside a shape.

14

Figure 7: The Orchestration Designer lets a developer create business logic by dragging and

dropping shapes from a toolbox onto a design surface.

SOAP-based Web services have had a big impact on application development. To access an external

Web service, an orchestrationôs creator might use the Add Web Reference option in Visual Studio

along with the SOAP adapter. BizTalk Server 2009 also includes a WCF Service Consuming Wizard

that helps developers create orchestrations that consume services exposed via SOAP or any other

mechanism supported by WCF. The product provides a WCF Service Publishing wizard as well that

walks a developer through the steps required to expose one or more of an orchestrationôs operations

as WCF services.

Orchestrations are the fundamental mechanism for creating business processes in BizTalk Server

2009. Yet a significant subset of processes can benefit from an easier way to define and change the

business rules they contain. Allowing this is the goal of the Business Rule Engine, as described next.

Using the Business Rule Engine

The Orchestration Designer is a useful tool for defining a business process. Yet some aspects of an

orchestration tend to change more often than others. In particular, the decisions embedded in a

business processðthe business rulesðare commonly its most volatile aspect. A managerôs spending

limit was $100,000 last week, but her promotion bumps this up to $500,000, or a slow-paying

customerôs maximum allowed order decreases from 100 units to only 10. Why not provide an explicit

way to specify and update these rules? To allow this, BizTalk Server 2009 includes the BRE.

The BRE is most useful when a complex set of business rules must be evaluated. Deciding whether to

grant a loan, for example, might entail working through a large set of rules based on the customerôs

credit history, income, and more. Similarly, determining whether to sell life insurance to an applicant

15

depends on a number of things, including the applicantôs age, gender, and a myriad of health factors.

Expressing all of these rules as conditional statements using, say, an orchestrationôs Decide shape

might be possible, but itôs not simple. For rule-intensive processes like these, the BRE can make a

developerôs life significantly simpler.

The BRE can also make changing rules faster and easier. To see why, think about whatôs required to

change a business rule thatôs implemented within an orchestration. A developer must first open the

orchestration in Visual Studio, modify the appropriate shapes (and perhaps any .NET objects they

invoke), then build and deploy the modified assembly. Doing this also requires stopping and re-starting

the BizTalk application that includes this orchestration. If instead this business rule is implemented

using the BRE, it can be modified without recompiling or restarting anything. All thatôs required is

changing the desired rule, then redeploying the new set of rules. The change will take effect

immediately. And while orchestrations are typically created and maintained by developers, business

rules are readable enough that in some cases they can be modified by business analysts without the

need to involve more technical people.

The creator of a set of business rules will typically begin by using a tool called the Business Rule

Composer to define a vocabulary for use in specifying those rules. Each term in the vocabulary

provides a user-friendly name for some information. For example, a vocabulary might define terms

such as Number Shipped, Maximum Quantity of Items, and Approval Limit. Each of these terms can be

set to a constant or be mapped to a particular element or attribute in some XML schema (and thus in

an incoming message) or to the result of a SQL query against some database or even to a value in a

.NET object.

Once a vocabulary has been defined, the Business Rule Composer can be used to create business

policies that use this vocabulary. Each policy can contain one or more business rules. A rule uses the

terms defined in some vocabulary together with logical operators such as Greater Than, Less Than, Is

Equal To, and others to define how a business process operates. A business rule can define how

values contained in a received XML document should affect the values created in an XML document

thatôs sent, or how those received values should affect what value is written in a database, or other

things.

Imagine, for instance, a simple vocabulary that defines the term Maximum Allowed Order Quantity,

whose value is set to 100, and the term Quantity Requested, whose value is derived from a specified

element in received XML documents that correspond to the schema used for placing orders. A

business analyst might create a rule stating that if the Quantity Requested in an incoming order is

greater than the Maximum Allowed Order Quantity, the order should be rejected, perhaps resulting in

an appropriate XML document being sent back to the originator of this order.

To execute a business policy, an orchestration uses a CallRules shape. This shape creates an

instance of the BRE, specifies which policy to execute, then passes in the information this policy needs,

such as a received XML document. The BRE can also be invoked programmatically via a .NET-based

object model, which allows it to be called from applications that donôt use BizTalk Server 2009

(although a BizTalk Server license is always required to use the BRE).

Both vocabularies and business rules can be much more complicatedðand much more powerfulð

than the simple examples described here. But the core idea of defining a vocabulary, then defining sets

of rules that use that vocabulary is the heart of the Business Rule Engine. The goal is to provide a

straightforward way for BizTalk Server 2009 users to create and work with the rules that pervade

business processes.

16

Creating Scalable Configurations

Itôs possible to install every component of BizTalk Server 2009 on a single machine. Yet itôs not hard to

imagine situations where this isnôt the right solution. Maybe the number of messages the system must

handle is too great for one machine, or perhaps redundancy is required to make the system more

reliable. To meet requirements like these, the product can be deployed in a number of ways.

A fundamental concept for deploying BizTalk Server is the idea of a host. A host can contain various

things, including orchestrations, adapters, and pipelines. Hosts are just logical constructs, however. To

use them, a BizTalk administrator must cause actual host instances to be created. Each host instance

is a Windows process, and as Figure 10 shows, it can contain various things. In the example shown

here, Machine A is home to two host instances. One contains a receive port, while the other contains

the orchestrations P and Q. Machine B runs just one host instance, also containing the two

orchestrations P and Q. Machine C, like machine A, is home to two host instances, but neither of them

contains an orchestration. Instead, each of these instances contains a different send port. Finally,

machine D houses the MessageBox database thatôs used by all of the host instances in this

configuration.

Figure 8: A single BizTalk Server installation can be spread across multiple hosts on multiple

machines.

This example illustrates several ways in which hosts might be used. For instance, since both machines

A and B are home to the orchestrations P and Q, BizTalk Server 2009 can automatically load balance

requests to these orchestrations based on the availability and current load on each machine. This

allows a BizTalk application to scale up as needed for high-volume processes. Notice also that

machine C contains two different ways to handle outgoing messages, with each perhaps using a

different send adapter. And because each host instance is isolated from every other host instanceð

theyôre separate Windows processesðitôs safer to run code thatôs not completely trusted, such as a

new custom adapter, in a separate instance. Itôs also worth pointing out that even though this example

17

contains only a single instance of the MessageBox database, itôs possible to replicate this database for

greater scalability or cluster it to avoid creating a single point of failure.

Creating and Managing BizTalk Applications

Like other software, a BizTalk application is created using development tools. Once itôs created, the

application must be deployed and managed. This section looks at how these things are accomplished

with BizTalk Server 2009.

Creating Applications

Most software is built by teams of people. In recognition of this fact, Microsoft provides Visual Studio

Team System to help development teams create applications. The heart of Team System is Team

Foundation Server (TFS), which provides a common home for source code, tests, and other

development artifacts. Yet using TFS and other aspects of Visual Studio Team System wasnôt originally

possible with BizTalk applications.

BizTalk Server 2009 changes this, making Visual Studio Team System available to BizTalk developers.

Rather than using a more idiosyncratic approach, these developers can now rely on TFS for source

control, use the Microsoft build engine to build applications, create and run unit tests for BizTalk

artifacts, and more. Project managers can also use Visual Studio Team System to track progress, just

as with any other development project.

Managing Applications

The primary tool for managing BizTalk applications is the BizTalk Administration console, a Microsoft

Management Console (MMC) snap-in that provides a standard user interface for BizTalk

administrators. While this tool gives administrators a number of capabilities, the most important are the

ability to do three things:

 Deploy BizTalk applications. Using the BizTalk Administration console, an admin can specify the

components of a BizTalk application, deploy it to one or more servers, and more.

 Configure BizTalk applications. When a developer creates an orchestration, she works largely in

logical terms. To define how BizTalk Server 2009 will communicate with a particular application, for

example, the developer can select the WCF SOAP adapter without worrying about the specific

URL that will be used. Similarly, she can specify that the send pipeline should include a component

that adds a digital signature to outgoing messages without worrying about exactly what key will be

used to create this signature. Yet to make the application work, these details must be specified.

The BizTalk Administration console allows an admin to create and modify details like these.

 Monitor and manage BizTalk applications. Using the BizTalk Administration consoleôs Group Hub

page, an administrator can monitor the operation of BizTalk applications. As Figure 11 shows,

information about the status of these applications can be examined in various ways. An

administrator can look at currently running applications, for example, suspending and restarting

them as necessary. Itôs also possible to look more closely at individual applications, examining

specific messages or other details. And rather than requiring an administrator to search for

problems, the Group Hub page uses color-coded indicators to display those problems. This lets

administrators take a more proactive approach to application monitoring.

18

Figure 9: The BizTalk Administration console's Group Hub page lets an administrator monitor and

manage running BizTalk applications.

The BizTalk Administration console, which uses BizTalk Server 2009ôs Configuration database, also

provides other services. An administrator can dynamically add machines and specify what hosts should

be assigned to them while a BizTalk application is running, for example, without shutting down the

application. The Administration consoleôs functions can also be accessed programmatically through

Windows Management Instrumentation (WMI), which allows administrators to create scripts that

automate management functions. And as with other Microsoft server products, a BizTalk Server 2009

management pack is available, allowing the product itself to be monitored and managed with Microsoft

Operations Manager 2005 or System Center Operations Manager 2007

While the BizTalk Administration console can be used to keep track of current applications, itôs also

useful to be able to examine historical information about groups of applications. Doing this is the

primary purpose of the Health and Activity Tracking (HAT) component of BizTalk Server 2009. The

HAT tool provides access to aggregated historical information about BizTalk applications running on a

system. This information can include when an orchestration starts and ends, when each shape within it

is executed, when each of its messages is sent and received, whatôs in those messages, and more.

The HAT tool can be used to examine archived data, looking for patterns and trends in the execution of

a process. This information is useful for debugging, answering business questions (such as verifying

that a message really was sent to a customer), and keeping ongoing statistics that can be used to

improve performance.

19

Additional BizTalk Server 2009 Technologies

The fundamentals of a BizTalk application revolve around messaging and orchestration. The product

provides more than this, however, including business activity monitoring, support for working with

RFIDs, and more. This section takes a brief look at each of these technologies.

Business Activity Monitoring

BizTalk Server 2009 provides support for automated business processes that span multiple

applications. But once those automated processes have been created, the information workers that use

themðbusiness people, not developersðmight need to monitor various business-related aspects of

the process. To allow this, BizTalk Server 2009 provides BAM.

Itôs not hard to think of different ways that an information worker might want to look at a business

process. A purchasing manager might need to see how many POs are approved and denied each day,

for instance, while a sales manager might want an hourly update on what products are being ordered.

Meeting these diverse needs requires a general framework for tracking whatôs going on with a

particular business process. This is exactly what BAM provides.

As Figure 12 suggests, itôs useful to think of BAM technology in two distinct parts:

 An infrastructure for collecting information about in-progress business processes. Because these

processes might rely on other applications as well as BizTalk orchestrations, this infrastructure

must be usable with more than just BizTalk Server 2009.

 Tools that let information workers access that information. Different people will want to see BAM

data in different ways, and so the tools they use might be quite diverse. Some typical examples

include dashboards that provide real-time display of critical data, reporting services that present

historical trends, and common desktop tools such as spreadsheet applications.

20

Figure 10: BAM data can be generated by orchestrations and other .NET applications, then used in a

variety of ways.

The first of these two aspects, an infrastructure for collecting information about running processes, is

provided by BizTalk Server 2009. As Figure 12 shows, BizTalk orchestrations can directly generate

BAM data, all of which is sent into a BAM database. Using a tool called the Tracking Profile Editor, a

developer can configure an orchestration to send the desired information to this database. Via a

BizTalk-provided BAM API, this infrastructure can also be used with any application built on the .NET

Framework. Along with this general API, BizTalk Server 2009 provides BAM interceptors designed

specifically for applications created using WCF and Windows Workflow Foundation (WF).

However it gets to the BAM database, this data is stored in tables and cubes. This information is then

accessible via a set of BAM Web services, as shown in Figure 12, and different clients are free to do

different things with this information. An Excel user, for instance, might read it into a pivot table, then

create a graphical view of the aspects of this process that she wishes to see. (BizTalk Server 2009

provides an Excel add-in to make this easier to do.) This view can be updated as often as necessary,

allowing real-time monitoring of the business process.

Other tools can display the data in other ways. Office PerformancePoint Server 2007, for example,

might display BAM data generated by one or more business processes as part of a dashboard. The

screen shot below shows an illustration of how this might look using PerformancePointôs Business

Scorecard Manager.

